开关磁阻电机不同于常规的感应电机,因其自身结构的特殊性,既可以通过控制电机自身的参数(如开通角、关断角)来实现,也可以用适用于其他电机上的控制理论,如PID控制、模糊控制等,对功率变换器部分进行控制,进而实现电机的速度调节。 针对开关磁阻电机自身参数进行控制,主要有角度位置控制、电流斩波控制和电压控制。 (1)角度位置控制:角度位置控制是在加在绕组上的电压一定的情况下,通过改变绕组上主开关的开通角和关断角,来改变绕组的通、断电时刻,调节相电流的波形,实现转速闭环控制。当电机转速较高时,旋转电动势较大,则此时电流上升率下降,各相的主开关器件的导通时间较短,电机绕组的相电流不易上升,电流相对较小,便于使用角度位置控制方式。 因为开通角和关断角都可调节,角度位置控制可分为变开通角、变关断角和同时改变开通角及关断角三种方式。改变开通角,可改变电流波形的宽度、峰值和有效值的大小,还可改变电流波形与电感波形的相对位置,从而改变了电机的转矩和转速。而关断角一般不影响电流的峰值,但可改变电流波形的宽度及其与电感曲线的相对位置,进而改变电流的有效值。故一般采用固定关断角、改变开通角的控制方式。 根据开关磁阻电机的转矩特性,当电流波形主要位于电感的上升区时,产生的平均电磁转矩为正,电机运行在电动状态;当电流波形主要位于电感的下降段时,产生的平均电磁转矩为负,电机工作在制动状态。而通过对开通角、关断角的控制,可以使电流的波形处在绕组电感波形的不同位置。因此,可以用控制开通角、关断角的方式来使电机运行在不同的状态。 角度位置控制的优点在于,转矩调节的范围宽;可同时多相通电,以增加电机的输出转矩,同时减小了转矩波动;通过角度的优化,能实现效率最优控制或转矩最优控制。 角度位置控制不适于低速场合,因为在低速时,旋转电动势较小,使电流峰值增大,必须采取相应措施进行限流
,故一般用于转速较高的场合。
(2)电流斩波控制:电机低速运行特别是启动时,旋转电动势引起的压降很小,相电流上升快,为避免过大的电流脉冲对功率开关器件及电机造成损坏,需要对电流峰值进行限定,因此,可采用电流的斩波控制,获取恒转矩的机械特性。电流斩波控制一般不会对开通、关断角进行控制,它将直接选择在每相的特定导通位置对电流进行斩波控制。
电流斩波控制的优点在于,它适用于电机的低速调速系统,可以控制电流峰值的增长,
并有很好的电流调节作用;因每相电流波形会呈现出较宽的平顶状,使得产生的转矩比较平稳,转矩的波动相应地比其他控制方式要小。
然而,由于电流的峰值受到了限制,当电机转速在负载的扰动作用下发生变化时,电流的峰值无法做出相应的改变,使得系统的特性比较软,因此系统在负载扰动下的动态响应很缓慢。
(3)电压控制:电压控制是保持开通角、关断角不变的前提下,使功率开关器件工作在PWM方式。通过调节PWM波的占空比,来调整加在绕组两端电压的平均值,进而改变绕组电流的大小,实现对转速的调节。若增大调制脉冲的频率,就会使电流的波形比较平滑,电机出力增大,噪声减小,但对功率开关器件的工作频率的要求就会增大。
电压控制的优点在于,它通过调节绕组电压的平均值进而调节电流,因此可用在低速和高速系统,且控制简单,但它的调速范围有限。
开关磁阻电机也可以采用多种控制方式相组合的方法。如高速角度控制和低速电流斩波控制组合,变角度电压斩波控制和定角度电压斩波控制等。这些组合方式各有优势及不足,因此必须针对不同的应用场合和不同的性能要求,合理地选择控制方式,才能使电机运行于最佳状态。